代表性论文
[4] S. Huang, Y. Gao, H. Li, R. Wang, X. Zhang, X. Wang, D. Huang, L. Zhang, H. A. Santos*, Z. Yin*, and B. Xia*, Manganese@albumin nanocomplex and its assembly nanowire activate TLR4-dependent signaling cascades of macrophage. Adv. Mater. 2024, 36: 202310979. (影响因子:29.4,中科院一区)
[3] J. Li, D. Huang, R. Chen, P. Figueriredo, F. Fontana, A. Correia, S. Wang, Z. Liu, M. Kemell, G. Torrieri, E. Makila, J. Salonen, J. Hirvonen, Y. Gao, J. Li, Z. Luo*, H. A. Santos*, and B. Xia*, Multifunctional biomimetic nanovaccines based on photothermal and weak-immunostimulatory nanoparticulate cores for the immunotherapy of solid tumors. Adv. Mater. 2022, 34: 2108012. (Back Cover) (影响因子:29.4,中科院一区)
[2] J. Li, J. Fan, Y. Gao, S. Huang, D. Huang, J. Li, X. Wang, H. A. Santos*, P. Shen*, and B. Xia*, Porous silicon nanocarriers boost the immunomodulation of mitochondria-targeted bovine serum albumins on macrophage polarization. ACS Nano 2023, 17: 1036−1053. (影响因子:17.1,中科院一区)
[1] B. Xia*, B. Wang, J. Shi, Y. Zhang, Z. Chen, Q. Zhang, and J. Li, Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as a multifunctional drug carrier for chemo-photothermal combination cancer therapy. Acta Biomater. 2017, 51: 197−208. (影响因子:9.7,中科院一区)
其他论文
[30] Y. Gao, D. Huang, S. Huang, H. Li*, and B. Xia*, Rational design of ROS generation nanosystems to regulate innate immunity. Int. Immunopharmacol. 2024, 139: 112695.
[29] S. Huang, X. Zhang, H. Li, L. Zhang, Y. Gao, R. Wang, X. Wang, D. Huang, H. A. Santos*, Z. Yin*, and B. Xia*, Endocytic manipulation of TLR4 nanoagonists to boost macrophage-medicated therapy for non-small cell lung cancer. ACS Nano 2024, in revision.
[28] D. Huang, X. Wang, W. Wang, X. Zhang, and B. Xia*, Cell-membrane engineering strategies for clinic-guided design of nanomedicine. Biomater. Sci. 2024, 12: 2865-2884.
[27] Q. Han, D. Huang, S. Li, B. Xia*, and X. Wang*, Multifunctional nanozymes for disease diagnosis and therapy. Biomed. J. 2024, DOI: 10.1016/j.bj.2024.100699.
[26] D. Huang, and B. Xia*, Mitochondrial reactive oxygen species induced by Rhodamine 110@porous silicon nanocomposites to potentiate the antitumor immune responses. in preparation.
[25] Y. Gao, J. Li, D. Huang, S. Huang, H. Li, H. Tong, J. Shi, Z. Yin*, and B. Xia*, Multifunctional bovine serum albumin-based nanocarriers with endosomal escaping and NIR light-controlled release to overcome multidrug resistance of breast cancer cells. J. Drug Deliv. Sci. Tec. 2022, 77: 103869.
[24] Y. Gao, and B. Xia*, Editorial: Mitochondria-targeted nanocarriers for enhanced efficacy of cancer therapy. Front. Bioeng. Biotech. 2022, 10: 905999.
[23] R. Cheng, S. Wang*, K. Moslova, E. Makila, J. Salonen, J. Li, J. Hirvonen, B. Xia, and H. A. Santos*, Quantitative analysis of porous silicon nanoparticles functionalization by 1H NMR. ACS Biomater. Sci. Eng. 2022, 8: 4132−4139.
[22] Y. Gao, H. Tong, J. Li, J. Li, D. Huang, J. Shi*, and B. Xia*, Mitochondria-targeted nanomedicine for enhanced efficacy of cancer therapy. Front. Bioeng. Biotech. 2021, 9: 720508.
[21] H. Tong, Y. Gao, D. Huang, J. Li, J. Li, J. Shi*, H. A. Santos*, and B. Xia*, Mitochondria-targeted bovine serum albumin@copper sulfide nanocomposites conjugated with rhodamine-110 dyes for an enhanced efficacy of cancer photothermal therapy. Part. Part. Syst. Char. 2021, 38: 202100013.
[20] S. Wang, S. Wannasarit, P. Figueriredo, J. Li, A. Correia, B. Xia, R.Wiwattananpatapee, J. Hirovonen, D. Liu, W. Li*, and H. A. Santos*, Superfast and controllable microfluidic inking of anti-inflammatory melanin-like nanoparticles inspired by Cephalopod, Mater. Horiz. 2020, 7: 1573−1580.
[19] J. Li, Y. Gao, H. Tong, W. Zhang, J. Shi*, H. A. Santos*, and B. Xia*, Near infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multi-drug resistance of breast cancer cells with enhanced efficiency. J. Mater. Chem. B 2020, 8: 546−557.
[18] B. Xia*, W. Zhang, H. Tong, Z. Chen, J. Li, and J. Shi*, Multifunctional chitosan/porous silicon@Au nanocompoiste hydrogels for long-term and repeatedly localized combinatorial therapy of cancer via a single injection. ACS Biomater. Sci. Eng. 2019, 5: 1857−1867.
[17] B. Xia*, W. Zhang, J. Shi, J. Li, Z. Chen, and Q. Zhang, NIR light-triggered gelling in situ of porous silicon nanoparticles/PEGDA hybrid hydrogels for localized combinatorial therapy of cancer cells. J. Appl. Polym. Sci. 2019, 136: 47443.
[16] B. Xia*, Q. Zhang, J. Shi, J. Li, Z. Chen, and B. Wang, Co-loading of photothermal agents and anticancer drugs into porous silicon nanoparticles with enhanced chemo-photothermal therapeutic efficacy to kill multidrug-resistant cancer cells. Colloid. Surface. B 2018, 164: 291−298.
[15] B. Xia*, J. Li, J. Shi, Y. Zhang, Q. Zhang, Z. Chen, and B. Wang, Biodegradable and magnetic-fluorescent porous silicon@iron oxide nanocomposites for fluorescence/magnetic resonance bimodal imaging of tumor in vivo. ACS Biomater. Sci. Eng. 2017, 3: 2579−2587.
[14] B. Xia*, B. Wang, Z. Chen, Q. Zhang, and J. Shi, Near-infrared light-triggered intracellular delivery of anticancer drugs using porous silicon nanoparticles conjugated with IR820 dyes. Adv. Mater. Interfaces 2016, 3: 1500715. (Front Cover)
[13] B. Xia*, B. Wang, W. Zhang, and J. Shi*, High loading of doxorubicin into styrene-terminated porous silicon nanoparticles via p-stacking for cancer treatments in vitro. RSC Adv. 2015, 5: 44660−44665.
[12] B. Xia*, B. Wang, W. Zhang, J. Shi, and S. Xiao, Engineering near-infrared fluorescent styrene-terminated porous silicon nanocomposites with bovine serum albumin encapsulation for in vivo imaging. J. Mater. Chem.B 2014, 2: 8314−8320.
[11] B. Xia*, W. Zhang, J. Shi, and S. Xiao, A novel strategy to fabricate doxorubicin/bovine serum albumin/porous silicon nanocomposites with pH-triggered drug delivery for cancer therapy in vitro. J. Mater. Chem.B 2014, 2: 5280−5286.
[10] B. Xia*, J. Shi, W. Zhang, C. Dong, Y. Lu, and P. Guo, Covalent assembly of poly(ethyleneimine) via layer-by-layer deposition for enhancing surface density of protein and bacteria attachment. Appl. Surf. Sci. 2014, 292: 1040−1044.
[9] B. Xia*, W. Zhang, J. Shi, and S. Xiao, Engineered stealth porous silicon nanoparticles via surface encapsulation of bovine serum albumin for prolonging their blood circulation in vivo. ACS Appl. Mater. Inter. 2013, 5: 11718−11824.
[8] B. Xia*, W. Zhang, J. Shi, and S. Xiao, Fluorescence quenching in luminescent porous silicon nanoparticles for the detection of intracellular Cu2+. Analyst 2013, 138: 3628−3632.
[7] B. Xia, Y. Gao, and J. Li, Near-infrared imaging for in vivo assessment of porous silicon-based materials. Porous Silicon for Biomedical Application (2nd Edition) Chapter 10, Elsevier, 2021.(专著)
[6] 夏兵、王宾,一种可降解的聚苯胺/多孔硅纳米复合物及其制备方法和应用,2018. 9,中国,ZL201610926621.1(专利)。
[5] 夏兵,多孔硅基生物杂化纳米系统激活抗肿瘤免疫力,第五届国际纳米药物大会,广州,2023 11. 4-2023 11. 7(会议论文,口头报告)。
[4] 夏兵,生物杂化纳米系统激活抗肿瘤免疫力,2023年度《国家科学评论》化学与材料科学前沿论坛,扬州,2023 11. 10-2023 11. 12(会议论文,邀请报告)。
[3] 夏兵、王宾,生物功能化多孔硅纳米颗粒在生物医学中的应用,第十三届全国生物无机化学学术会议,上海,2016. 10. 13-2016. 10. 16(会议论文)。
[2]夏兵、王宾,多孔硅基复合纳米材料的制备及其在活体成像和光热治疗中的应用,中国化学会第30届学术年会,大连,2016. 6. 30-2016. 7. 5(会议论文)。
[1]夏兵、张文一、施季森,生物功能化多孔硅纳米颗粒在细胞成像和药物载体中的应用,中国化学会第29届学术年会,北京,2014. 8. 7-2014. 8. 10(会议论文,口头报告)。